Product of consecutive Fib numbers

20180919_Codewars_productFib

Posted by Huiyang_Lu on September 19, 2018

Product of consecutive Fib numbers

Codewars Kata 11√

Description

Link: productFib

-简述:本题给定一个数字,问它是哪两个fibonacci数字的乘积
-思路:已知fibonacci数字是如何得到的,根据其进行求解
-难点:while循环简便

The Fibonacci numbers are the numbers in the following integer sequence (Fn):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

such as

F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1) verifying

F(n) * F(n+1) = prod.

Your function productFib takes an integer (prod) and returns an array:

[F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True) depending on the language if F(n) * F(n+1) = prod.

If you don’t find two consecutive F(m) verifying F(m) * F(m+1) = prodyou will return

[F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False) F(m) being the smallest one such as F(m) * F(m+1) > prod.

Examples

productFib(714) # should return [21, 34, true], # since F(8) = 21, F(9) = 34 and 714 = 21 * 34

productFib(800) # should return [34, 55, false], # since F(8) = 21, F(9) = 34, F(10) = 55 and 21 * 34 < 800 < 34 * 55 Notes: Not useful here but we can tell how to choose the number n up to which to go: we can use the “golden ratio” phi which is (1 + sqrt(5))/2 knowing that F(n) is asymptotic to: phi^n / sqrt(5). That gives a possible upper bound to n.

You can see examples in “Example test”.

References

http://en.wikipedia.org/wiki/Fibonacci_number

http://oeis.org/A000045

My solution
def productFib(prod):
    a = [0,1,1]
    b = [0,1,2]
    for i in range(2,100):
        a[i]=a[i-1]+a[i-2]
        a.append(a[i])
        i+=1
    for j in range(2,100):
        b[j]=a[j]*a[j+1]
        b.append(b[j])
        j+=1
    for x in range(0,100):
        if prod - b[x] == 0:
            return [a[x],a[x+1],True]
        else:
            x+=1
        if prod != b[x]:
            for y in range(0, 100):
                if prod > b[y] and prod < b[y + 1]:
                    if prod - b[y] > prod - b[y + 1]:
                        return [a[y + 1], a[y + 2], False]
                    elif prod - b[y] < prod - b[y + 1]:
                        return [a[y], a[y + 1], False]
                else:
                    y += 1  
Given solution
def productFib(prod):
    a, b = 0, 1
    while prod > a * b:
        a, b = b, a + b
    return [a, b, prod == a * b]    

↑↑↑while循环,非常巧妙了

今日心得:心态崩了…答案也太简洁了…我想得好复杂_(:з」∠)_

Points

1 while循环直接求解